首页> 外文OA文献 >Automation methodologies and large-scale validation for $GW$, towards high-throughput $GW$ calculations
【2h】

Automation methodologies and large-scale validation for $GW$, towards high-throughput $GW$ calculations

机译:自动化方法和大规模验证$ GW $,朝向   高吞吐量$ GW $计算

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The search for new materials, based on computational screening, relies onmethods that accurately predict, in an automatic manner, total energy,atomic-scale geometries, and other fundamental characteristics of materials.Many technologically important material properties directly stem from theelectronic structure of a material, but the usual workhorse for total energies,namely density-functional theory, is plagued by fundamental shortcomings anderrors from approximate exchange-correlation functionals in its prediction ofthe electronic structure. At variance, the $GW$ method is currently thestate-of-the-art {\em ab initio} approach for accurate electronic structure. Itis mostly used to perturbatively correct density-functional theory results, butis however computationally demanding and also requires expert knowledge to giveaccurate results. Accordingly, it is not presently used in high-throughputscreening: fully automatized algorithms for setting up the calculations anddetermining convergence are lacking. In this work we develop such a method and,as a first application, use it to validate the accuracy of $G_0W_0$ using thePBE starting point, and the Godby-Needs plasmon pole model($G_0W_0^\textrm{GN}$@PBE), on a set of about 80 solids. The results of theautomatic convergence study utilized provides valuable insights. Indeed, wefind correlations between computational parameters that can be used to furtherimprove the automatization of $GW$ calculations. Moreover, we find that$G_0W_0^\textrm{GN}$@PBE shows a correlation between the PBE and the$G_0W_0^\textrm{GN}$@PBE gaps that is much stronger than that between $GW$ andexperimental gaps. However, the $G_0W_0^\textrm{GN}$@PBE gaps still describethe experimental gaps more accurately than a linear model based on the PBEgaps.
机译:基于计算筛选来寻找新材料的方法依赖于能够自动准确预测材料的总能量,原子尺度的几何形状以及其他基本特征的方法。许多技术上重要的材料性能直接取决于材料的电子结构但是,总能量的通常主力,即密度泛函理论,在其电子结构的预测中受到近似交换相关泛函的基本缺陷和误差所困扰。总而言之,$ GW $方法是当前用于精确电子结构的最新{\ em ab initio}方法。它主要用于微扰地校正密度泛函理论结果,但是对计算的要求很高,并且还需要专业知识才能给出准确的结果。因此,目前在高通量筛选中不使用它:缺少用于建立计算和确定收敛性的全自动算法。在这项工作中,我们开发了这样一种方法,并且作为第一个应用程序,使用它来使用PBE起点和Godby-Needs等离子体激元极模型($ G_0W_0 ^ \ textrm {GN} $ @ PBE)来验证$ G_0W_0 $的准确性。 ),约80个固体。利用自动收敛研究的结果提供了宝贵的见解。确实,我们在计算参数之间找到了相关性,可以用来进一步改善$ GW $计算的自动化程度。此外,我们发现$ G_0W_0 ^ \ textrm {GN} $ @ PBE显示了PBE与$ G_0W_0 ^ \ textrm {GN} $ @ PBE缺口之间的相关性,其相关性比$ GW $和实验缺口之间的相关性强得多。但是,$ G_0W_0 ^ \ textrm {GN} $ @ PBE间隙仍然比基于PBEgaps的线性模型更准确地描述了实验间隙。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号